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Abstract 14 

We investigated the efficiency of attack strategies to network nodes when targeting several 15 

complex model and real-world networks. We tested 5 attack strategies, 3 of which were 16 

introduced in this work for the first time, to attack 3 model networks (Erdos and Renyi, 17 

Barabasi and Albert preferential attachment network, and scale-free network 18 

configuration models) and 3 real networks (Gnutella peer-to-peer network, email network 19 

of the University of Rovira i Virgili, and immunoglobulin interaction network). Nodes 20 

were removed sequentially according to the importance criterion defined by the attack 21 

strategy, and we used the size of the largest connected component (LCC) as a measure of 22 

network damage. We found that the efficiency of attack strategies (fraction of nodes to be 23 

deleted for a given reduction of LCC size) depends on the topology of the network, 24 

although attacks based on either the number of connections of a node or betweenness 25 

centrality were often the most efficient strategies. Sequential deletion of nodes in 26 

decreasing order of betweenness centrality was the most efficient attack strategy when 27 

targeting real-world networks.  The relative efficiency of attack strategies often changed 28 

during the sequential removal of nodes, especially for networks with power-law degree 29 

distribution. 30 

31 
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1. Introduction 32 

The resilience of real-world complex networks, such as Internet, electrical power grids, 33 

airline routes, ecological and biological networks [1-6] to “node failure” (i.e. node 34 

malfunctioning or removal) is a topic of fundamental importance for both theoretical and 35 

applied network science. Node failure can cause the fragmentation of the network, which 36 

has consequences in terms of system performance, properties, and architecture, such as 37 

transportation properties, information delivery efficiency and the reachability of network 38 

components (i.e. ability to go from node of the network to another) [3].  39 

Several studies [3,7,8,9] have investigated the resilience of model networks using a 40 

number of “attack strategies”, i.e. a sequence of node removal according to certain 41 

properties of the nodes [2,3,7]. A widely-applied attack strategy consists in first ranking 42 

the nodes with respect to an importance criterion (e.g. number of connections or some 43 

measure of centrality) and then remove the nodes sequentially from the most to the least 44 

important according to the chosen criterion until the network either becomes disconnected 45 

or loses some essential qualities [3,10]. However, little is known on how the efficiency of 46 

attack strategies (i.e. the fraction of nodes to be deleted for a given change in the network) 47 

varies when considering different real-world and model networks.  48 

In this context, an underappreciated problem is how the relative efficiency of attack 49 

strategies may change during the attack to the network. For example, an attack strategy 50 

might be more efficient when the targeted (i.e. under attack) network is still pristine, while 51 

other strategies may be more efficient when the network has already been fragmented and 52 

some of its properties have been compromised. Testing the efficiency of the different 53 

attack strategies when targeting different networks may also allow to identify the most 54 
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important nodes for network functioning, and therefore which nodes should be primarily 55 

protected, as in the case of computer  [11] or ecological networks [6,12-14], or removed, as 56 

in the case of immunization/disease networks [15].  57 

In this work, we test the efficiency of both well-known attack strategies and new strategies 58 

introduced for the first time in this paper when targeting either model or real-world 59 

networks. We used the size of the largest connected component (LCC) (i.e. the largest 60 

number of nodes connected among them in the network, [2]) as a measure of network 61 

damage. We found for model networks that the best strategy to reduce the size of the LCC 62 

depended on the topology of the network that was attacked. For real-world networks, the 63 

removal of nodes using betweenness centrality as importance criterion was consistently 64 

the most efficient attack strategy. For some networks, we found that an attack strategy can 65 

be more efficient than others up to a certain fraction of nodes removed, but other attack 66 

strategies can become more efficient after that fraction of nodes has been removed.  67 

2.Methods 68 

2.1 Attack strategies 69 

We attacked the networks by sequentially removing nodes following some importance 70 

criteria. We compared the efficiency of a pool of attacks strategies, some of which have 71 

been already described in the literature while others are introduced in this work for the 72 

first time.  73 

Most of the analyses on the robustness of network have investigated the effect of removing 74 

nodes according to their rank (i.e. number of links of the node) or some measures of 75 

centrality [3,10,16]. In this work, we introduce new attack strategies that focus entirely or 76 
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in part on less local properties of a node, in particular its number of second neighbors, as 77 

explained in detail below.  78 

Several indexes and measures have been proposed in order to describe network damage. 79 

We use the size of the largest connected component (LCC), i.e. the size of the largest 80 

connected sub-graph in the network [2,3], as a measure of network damage during the 81 

attack, where a faster decrease in the size of the LCC indicates a more efficient attack 82 

strategy. In order to compare attack strategies across networks, we normalized LCC size at 83 

any point during the attack with respect to the starting LCC size, i.e. the number of nodes 84 

in the LCC before the attack. 85 

For each attack strategy, we applied both the recalculated and non-recalculated method. 86 

With the recalculated method, the property of the node relevant for the attack strategy 87 

(e.g. number of links) was recalculated after each node removal. On the other hand, when 88 

applying the non-recalculated method the property of the node was measured before the 89 

first node removal and was not updated during the sequential deletion of nodes. With q 90 

we indicate the fraction of nodes removed during the sequential removal of nodes. An 91 

attack strategy is less efficient than another when a higher q to reduce the LCC to zero (or 92 

any other size).  93 

In this work, we used 2 attack strategies that have already been described in the literature. 94 

First-degree neighbors (First): nodes are sequentially removed according to the number of 95 

first neighbors of each node (i.e. node rank). In the case of ties (i.e. nodes with the same 96 

rank), the sequence of removal of nodes is randomly chosen. Nodes betweenness centrality 97 

(Bet): nodes are sequentially removed according to their betweenness centrality, which is 98 
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the number of shortest paths from all vertices to all others that pass through that node 99 

[3,17].  100 

We introduced in the present work the following new attack strategies. Second-degree 101 

neighbors (Sec): nodes are sequentially removed according to the number of second 102 

neighbors of each node. Second neighbors of node j are nodes that have a node in common 103 

with - but are not directly connected to - node j. First + Second neighbors (F+S): nodes are 104 

deleted according to the sum of first and second neighbors of each node. Combined first and 105 

second degree (Comb): nodes are removed according to their rank. In the case of ties, nodes 106 

are removed according to their second degree.  107 

For all attack nodes were sequentially removed from most to least connected. In the case of 108 

Bet, nodes were sequentially removed from higher to lower betweenness centrality. For 109 

each network described in Section 2.2, we tested the relative efficiency of the five attack 110 

strategies in reducing the LCC to zero. In addition, we tested whether the relative 111 

efficiency of attack strategies changed along the removal sequence, i.e. whether an attack 112 

strategies was less efficient than another at the beginning of the attack, but more efficient 113 

after a fraction q of nodes was removed.   114 

2.2 Networks 115 

We tested the attack strategies described in Section 2.2 on 3 types of model networks and 3 116 

real world networks.  117 

The 6 networks are undirected and unweighted graphs in which nodes are connected by 118 

links or edges, and rank k of a node is the number of links of that node. Each link may 119 

represent several real world interactions. For instance, in social networks links between 120 
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nodes represent interactions between individuals or groups, such as co-authorship in 121 

scientific publications or friendship [2]. In cellular networks, nodes are chemicals species 122 

connected by chemical reactions [18], while in ecological networks links describe the 123 

trophic interactions between species or group of species, e.g. the energy and matter 124 

passing from prey to predator [6,14,19,20]. 125 

2.2.1 Model networks 126 

We tested the attack strategies on (i) Erdos and Renyi graphs [21], (ii) Barabasi and Albert 127 

preferential attachment networks [2], and (iii) scale-free network configuration models 128 

[22]. For each model network, we tested the efficiency of attack strategies on networks of 129 

different size, as explained below. Since each model network is a random realization of the 130 

network-generating mechanism, we tested the attack strategies on 50 random realizations 131 

of each model network used the mean across replicates of the normalized LCC size at each 132 

fraction q of nodes removed as a measure of network damage. We observed a small 133 

variation of LCC size at each fraction q of nodes removed across different realizations of 134 

networks, thus the mean LCC size across replicates well represented the overall behavior 135 

of the attack strategy. 136 

The Erdos and Renyi (ER) model generates a random graph with N nodes connected by L 137 

links, which are chosen randomly with an occupation probability p from Lmax = N(N-1)/2 138 

possible links, i.e. p is the proportion of realized links from Lmax. The expected number of 139 

links is <L> = (N2p)/2 and the expected rank of a node is <k> = Np. The random graph can 140 

be defined by the number of nodes N and the occupation probability p, i.e. ER(N,p) [21]. 141 

We analyzed ER graphs with different values of N and p, specifically: ER(N = 500, p = 142 

0.008),  ER(1 000, 0.004), ER(10 000, 0.0004).  143 
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The Barabasi and Albert preferential attachment network (BA) is created starting from few 144 

isolated nodes and by then growing the network by adding new nodes and links [2]. At 145 

each step in the creation of the network, one node and m outgoing links from the new 146 

node are added to the network. The probability  that the new node will be connected to 147 

node i already in the network is function of the degree ki of node i, such that 148 

1

( ) /
j

i i j

j N

k k k




   (i.e. preferential attachment, since more connected nodes are more likely 149 

to be connected to the new node) [2]. The BA network is defined by parameters N and m. 150 

We built BA scale free networks with parameters BA(N=500, m = 2),  BA(1 000, 2), BA(10 151 

000, 2).  152 

We created networks with power-law degree distribution using the configuration model 153 

for generalized random graphs [2,22]. This model is defined as follows.  A discrete degree 154 

distribution P(K = k) = k-α is defined, such that P(k) is the proportion of nodes in the 155 

network having degree k. The maximum node degree kmax is equal to N, where N is the 156 

number of nodes. The domain of the discrete function P(k) becomes (1, kmax). We generated 157 

the degree sequence of the nodes by randomly drawing N values k1,…,kn from the degree 158 

distribution. Then, for each node i we assigned a link with node j with probability 159 

P(ki)P(kj.) A scale free configuration model network is defined by parameters N, α and <k>. 160 

We analyzed scale free network with parameters CM(N = 500, α = 2.5, <k> = 3.8), CM(1 161 

000,2.5,3.8), CM(10 000,2.5,3.9).  162 

2.2.2 Real world networks 163 

We tested the attack strategies on the following real-world networks: (i) The Gnutella P2P 164 

(peer-to-peer) network (Gnutella) [24], (ii) the email network of the University Rovira i 165 
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Virgili (URV) in Tarragona, Spain (Email) [25], and (iii) the immunoglobulin interaction 166 

network (Immuno) [26]. Nodes of Gnutella (N=8 846, L=31 839) represent hosts in the peer-167 

to-peer network, while links represent connections between the hosts [24]. E-mail (N=1 168 

134, L=10 902) provides an example of the flow of information within a human 169 

organization [25]. Immuno is the undirected and connected graph of interactions in the 170 

immunoglobulin protein (N = 1 316, L = 6 300) where nodes represent amino acids, and 171 

two amino acids are linked if they interact in the immunoglobulin protein [26]. 172 

3. Results 173 

3.1 Non-Recalculated method 174 

3.1.1 Model networks (Fig. 1 and Fig. A1) 175 

ER: For all sizes of networks, the 5 attack strategies were equally efficient in reducing the 176 

size of the LCC up to q ~= 0.2. For q >0.2, First was the most efficient strategy to reduce the 177 

size of the LCC to 0.  178 

CM: For N = 500, Comb was the most efficient strategy early in the removal sequence., 179 

while First became the most efficient strategy for q > 0.1. For N = 1 000, Comb, Bet, and First 180 

had the same efficiency. For N = 10 000, Comb, Bet, and First were equally efficient up to q 181 

= 0.1, while for q > 0.1 First was the most efficient strategy.  182 

BA:  For N = 500, First, Comb and Bet were equally efficient in reducing the size of the LCC. 183 

For bigger networks, First, Comb and Bet were equally efficient up to q = 0.8 (N = 1 000) 184 

and q = 0.5 (N = 10 000). Then, Bet became more efficient than First and Comb. 185 

3.1.2 Real-world networks (Fig. 2 and Fig. A2) 186 
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Email: Bet was the most efficient strategy to reduce LCC up to q~= 0.3. For greater 187 

fractions of nodes removed, First and Comb were slightly more efficient than Bet. 188 

Immuno: Bet was distinctly more efficient than other strategies up to q = 0.55. For q > 0.55, 189 

all strategies were equally efficient. 190 

Gnutella: Bet was the most efficient attack strategy.  191 

3.2 Recalculated method 192 

3.2.1 Model networks (Fig. 3 and Fig. A3) 193 

ER: First and Comb were the most efficient strategies to reduce the LCC up to q~=0.2. For q 194 

> 0.2, Bet became more efficient than First. Sec was the least efficient strategy. 195 

CM: Comb was the most efficient strategy up to q~=0.1. For q > 0.1, Bet was the most 196 

efficient strategy, while Sec was the least efficient strategies. 197 

BA: Comb was the most efficient strategy up to q~=0.1. First, F+S and Bet attack induced a 198 

slightly slower decrease in LCC size. For q > 0.1, Bet became the most efficient strategy. Sec 199 

was the least efficient strategy. 200 

3.2.2 Real-world networks (Fig. 4 and Fig. A4) 201 

Email: All attack strategies were equally efficient up to q = 0.12. For q > 0.12, Bet was the 202 

most efficient attack strategy.  203 

Immuno: Bet was largely the most efficient attack strategy. 204 

Gnutella: All attack strategies were equally efficient up to q = 0.1. For q > 0.1, Bet was the 205 

most efficient attack strategy.  206 
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4. Discussion 207 

We discuss the following main results of our work: (i) attacks were largely more efficient 208 

with the recalculated than with the non-recalculated method; (ii) the efficiency of attack 209 

strategies on model networks depended on network topology; (iii) the sequential removal 210 

of nodes according to their betweenness centrality was the most efficient attack to real-211 

world networks; (iv) for some networks, the relative efficiency of attack strategies changed 212 

during the removal sequence. 213 

We found that the recalculated method provided more efficient attacks than the non-214 

recalculated method, i.e. for a given fraction of nodes removed from the network, a larger 215 

reduction of LCC was obtained with the recalculated method.  This result confirms the 216 

findings of other analyses on robustness of networks [2,3], which found that updated 217 

information on the topology of the system after each removal allowed for more efficient 218 

attacks to networks.  219 

However, non-recalculated attack strategies are implemented in various relevant settings 220 

and are equivalent in practice to the simultaneous removal of nodes, as it happens in the 221 

case of vaccination campaigns  (i.e. the strategy is vaccinating at the same time nodes of 222 

the contact network with the highest probability of acquiring or transmitting the disease) 223 

or attacks to computer networks [11].  224 

For model networks, the efficiency of the attack strategies depended on network topology. 225 

In the case of networks with power-law degree distribution, the efficiency of the attack 226 

strategies depended also on network size. Across all model networks and considering both 227 

the non-recalculated and recalculated methods, attack strategies based on either node 228 

betweenness centrality or node rank were the most efficient ones. However, the sequential 229 



12 
 

deletion of nodes according to their betweenness centrality was consistently the most 230 

efficient attack strategy to real-world networks, with the only exception of the attack to the 231 

Email network with the non-recalculated method. While in some cases Bet was only 232 

slightly more efficient than other strategies in reducing the size of the largest connected 233 

component, in others Bet was largely the most efficient strategy. For example, in the 234 

immunoglobulin interaction network, deleting a very small fraction of nodes with high 235 

betweenness centrality reduced the size of the normalized LCC of more than 60% using 236 

either the recalculated and non-recalculated method, while - for the same fractions of 237 

nodes removed - other attack strategies caused only a 1-5% reduction in LCC size. 238 

Betweenness centrality describes how “central” a node is in the network by considering 239 

the fraction of shortest paths that pass through that node [17]. Nodes with betweenness 240 

centrality greater than 0 play a major role in connecting areas of the network that would 241 

otherwise be either sparsely connected or disconnected [23]. Thus, betweenness 242 

centrality an important centrality measure for a social, technological, computer, and 243 

biological networks. The higher efficiency of the strategy based on node betweenness 244 

centrality with respect to the attack based on node rank in real-world networks can be 245 

explained by the fact that in real-world networks some of the critical nodes (i.e. nodes 246 

whose persistence strongly contribute to maintaining network integrity) are either not 247 

highly linked, or that the highly-linked nodes are not located in the network core [23]. 248 

When applying the recalculated method, the newly-introduced Combined attack strategy 249 

was the most efficient strategy to decrease LCC size in the scale free network configuration 250 

model and in the Barabasi-Albert model up to q = 0.1. The Combined attack first select 251 

nodes according to their rank, then, in the case of ties (i.e. nodes with the same rank), it 252 
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sequentially removes nodes according to their second degree. On the contrary, in the case 253 

of ties First randomly chooses the removal sequence for the nodes with the same rank. 254 

Thus, at the beginning of the attack to the network, when two or more major hubs have 255 

the same number of links to other nodes, removing first the hub with the greatest second 256 

degree causes a faster decrease in LCC size than to randomly select the removal sequence 257 

for those hubs.  258 

Later in the attack sequence, the Combined strategy was less efficient than the First strategy 259 

to attack scale free networks; this might be due to the fact that after a certain fraction of 260 

hubs has been deleted, removing first (in the case of ties) the node(s) with the highest 261 

second degree(s) would remove more peripheral and less important nodes, i.e. nodes that 262 

are less likely to be part of the largest connected component.  263 

Further, the efficiency of attack strategies changed along the sequential removal of nodes. 264 

This was particularly clear for networks with power-law degree distribution. It follows 265 

that the percolation threshold, i.e. the fraction of nodes removed for which the size of the 266 

largest connected component reaches zero, might be for some networks little correlated 267 

with the fraction of nodes to be removed in order to reduce the largest connected 268 

component to a size greater than 0. This result has important implications for applied 269 

network science and deserves further investigations. For example, in the case of 270 

immunization strategies, choosing the attack strategy according to the percolation 271 

threshold may be of little use when the goal is to reduce as much as possible the size of 272 

LCC with just a few targeted immunizations. Lastly, the use LCC as a measure of the 273 

efficiency of the network may not be appropriate for immune networks. Immune 274 

networks, such as neural or lymphocyte networks, reveal a specific and non-trivial 275 
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architecture and they can display peculiar features when diluted. For this reason, 276 

differently from what happens in other kind of systems, when in immune networks the 277 

LCC decreases, the performance of the network can actually improve [27,28,29]. 278 
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Figure captions 353 

 354 

Figure 1. Size of normalized LCC and the fraction q of nodes removed for non-recalculated 355 

targeted attacks to model networks. Points are plotted every 20 nodes removed for networks with N 356 

= 500 and N =1 000, and every 200 nodes removed for N =10000. 357 

Figure 2. Size of normalized LCC and the fraction q of nodes removed for non-recalculated 358 

targeted attacks to real-world networks. Points are plotted every 50 nodes removed for Email and 359 

Immuno networks, and every 200 nodes removed for Gnutella. 360 

Figure 3. Size of normalized LCC and the fraction q of nodes removed for recalculated targeted 361 

attacks to model networks. Points are plotted every 20 nodes removed for networks with N = 500 362 

and N =1 000, and every 200 nodes removed for N =10000. 363 

Figure 4. Size of normalized LCC and the fraction q of nodes removed for recalculated targeted 364 

attacks to real-world networks. Points are plotted every 50 nodes removed for Email and Immuno 365 

networks, and every 200 nodes removed for Gnutella. 366 
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Highlights 

We investigated the efficiency of network attack strategies 

We used the size of the largest connected component as a damage measure 

We tested 3 attack strategies introduced in this work for the first time 

Deletion according to betweenness centrality was the most efficient attack strategy  

 


